Misuse of Radioactive Material: First Responder Considerations

Prepared by
Brooke Buddemeier, CHP
LLNL Counter Terrorism and Incident Response Program
Lawrence Livermore National Laboratory*

brooke2@llnl.gov (925) 423-2627

This presentation available for download from

http://www-cms.llnl.gov/seaborginstitute/training.html

Science in the National Interest

Lawrence Livermore National Laboratory

Department of Energy University of California Lawrence Livermore National Laboratory ensures national security and applies science and technology to important problems of our time.

First Responder Considerations

KEY POINTS TO REMEMBER

- A "Dirty Bomb" is conventional explosives combined with radioactive material
- This is **NOT** a nuclear explosion, the radioactive material does not enhance the explosion.
- Very few deaths would be expected from acute radiological exposure (the greatest hazard would likely be from the effects of the conventional explosives).
- First Responders can safely manage these events.
- The contamination will hamper emergency response efforts and can delay hospital treatment of casualties.
- Widespread contamination can have a significant psychological and financial impact.

A Case Study: Goiania, Brazil 1987

- When a hospital changed locations, a radiation therapy unit was temporarily left behind.
- Scrap metal hunters found the unit and dismantled it for scrap metal (~ Sept 18th).
- The 1.4 kiloCi (1,400 Ci) Cs-137 source containment was breached during the process.
- Pieces of source distributed to family and friends.
- Everyone was impressed by "the glowing blue stones." Children and adults played with them.
- Serious radiological accident recognized on <u>Sept 29th</u> when Acute Radiation Syndrome symptoms where recognized by hospital staff.

Initial Response

112,000 people (10 % of Goiania's population) were surveyed at an Olympic Stadium.

- 250 were identified as contaminated
- 50 contaminated people were isolated in a camping area inside the Olympic Stadium for more detailed screening

20 people were hospitalized or transferred to special

housing with medical and nursing assistance

- 8 patients transferred to the Navy Hospital in Rio de Janeiro
- Residential contamination survey was initiated

Early Consequences

- Widespread contamination of downtown Goiania
- 85 residences found to have significant contamination (41 of these were evacuated and a few were completely or partially demolished)
- People cross-contaminated houses 100 miles away
- Hot Spots at 3 scrap metal yards and one house

Radiation Injuries and Uptakes

4 fatalities (2 men, 1 woman and 1 child)

 28 patients had radiation induced skin injuries (they held/played with the source for extended periods)

50 people had internal deposition (ingestion)

FIG. 9.3. 3-30 days after exposure. The skin was excised. A raw reddish surface is covered with a delicate layer of fibrinous exsudate. Note the centripetal character of the healing process and the attempt of re-epithelialization.

Conclusions

IAEA-TECDOC-1009

- Long and expensive cleanup effort.
- Profound psychological effects such as fear and depression on large populations
- Isolation and boycott of goods by neighbors

Dosimetric and medical aspects of the radiological accident in Goiânia in 1987

INTERNATIONAL ATOMIC ENERGY AGENCY \(\Delta \)

June 1998

Radiological Considerations for Public Protective Actions

- EPA-established radiological public dose action levels to facilitate decision making
- Based on projected dose levels at which specific protective actions are warranted to reduce or eliminate the dose which is yet to be received
 - Early Phase
 - Actions that need to be initiated quickly
 - Dose projected to those standing outside over the first 4 days
 - · Evacuation, sheltering, administration of stable iodine
 - Intermediate Phase
 - Actions can be taken weeks to months after the accident
 - Dose projections to those living in the contaminated areas
 - Relocation, actions to avoid ingestion of contaminated foods

(DAC) rebino noiteA eviteetora

Early Phase

- 4 day exposure to cloud ("plume") immersion, cloud inhalation, groundshine, and resuspension:
 - 1 REM: consider evacuation or sheltering
 - 5 REM: consider evacuation
 - 25 REM Thyroid Dose: consider administration of stable iodine
- Intermediate Phase
 - Exposure to groundshine and resuspended material
 - 2 REM in first year, 0.5 REM in "second" year, 5 REM in first 50 years are levels at which relocation should be considered
 - Dose from ingestion
 - Expressed as deposition Derived Response Levels (DRL/DIL)
 - "Preventative" levels: 0.5 REM (1.5 REM Thyroid Dose)
 - "Emergency" levels: 5 REM (15 REM Thyroid Dose)

As an Example, if Brazil's Source was used as a "Dirty Bomb"

- This model makes <u>unrealistic assumptions</u>:
 - The source was 100% aerosolized
 - Lots of explosives (> 10 sticks of dynamite)
 - Presumes exposed populations "stood outside" during the 4 day exposure period

• Despite the accident in Brazil, sources of this strength are very difficult to obtain.

San Francisco Example: Ground Contamination Can be Detected East of Berkeley Hills

HYPOTHETICAL

≥ 0.5 uCi/m2
Can be detected
with thin window
G-M meter

57 km

≥ 5 uCi/m2
Can be detected
with most dose
rate meters

56 km

Release: Cs-137, 1375 Ci aerosolized Deposited Contamination

	Color	Level (uCi/m²)	Area (km²)	Description
		50	1.99	Population: 14,000 Take measures to prevent cross contamination
		5	24.43	Population: 24,000 Detectable with "hot dog" GM
		0.5	361.9	Population: 534,000 Detectable with "Pancake" GM

Release location: West of The Civic Center, San Francisco, CA 37° 46' 44" N 122° 25' 22" W

Winds near surface 10-15 mph from West.

uspices of the U.S. Department of Energy by the ornia, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Despite the widespread contamination, the EPA PAG Would Recommend Shelter of only a Few Residential Blocks

Doses (to those outside for 4 days) would exceed 1 rem only within a few blocks 2 km Same dose as 1/3 of our natural annual background dose 2 km

HYPOTHETICAL

Release: Cs-137, 1375 Ci aerosolized

4-Day TEDE,

Evacuation/Relocation PAG

	Color	Level (Rem)	Area (km²)	Description
		1	0.038	Population: 540 EPA guide for Shelter in place (No acute radiological effects)
		0.1	0.46	Population: 6,700 1/3 the annual natural background exposure
		0.01	3.94	Population: 15,000 Same dose as 2 round trip cross-country flights (cosmic radiation)

Release location: West of The Civic Center, San Francisco, CA 37° 46' 44" N 122° 25' 22" W

Winds near surface 10-15 mph from West.

uspices of the U.S. Department of Energy by the ornia, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Area that the population would need to be relocated because the annual dose > 5 rem (without any remediation of contamination)

Release: Cs-137, 1375 Ci aerosolized

1-Year Relocation PAG from Ground shine

HYPOTHETICAL

Color	Level (Rem)	Area (km²)	Description
	5	0.72	Population: 9085 First Year Relocation PAG

Release location: West of The Civic Center, San Francisco, CA 37° 46' 44" N 122° 25' 22" W

Winds near surface 10-15 mph from West.

uspices of the U.S. Department of Energy by the awrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Dose Rates that will be seen by initial responders. HYPOTHETICAL

HYPOTHETICAL

4 km

Release: Cs-137, 1375 Ci aerosolized Gamma Dose Rate

Color	Level (mR/hr)	Area (km²)	Description
	10	0.04	Population: 39 Consider Dosimetry for extended operations.
	1	0.5	Population: 772 Easily measured dose rate

Release location: West of The Civic Center, San Francisco, CA 37° 46' 44" N 122° 25' 22" W

Winds near surface 10-15 mph from West.

uspices of the U.S. Department of Energy by the awrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Site Contamination

The previous slides presumed 100% of the source material went "upward." It is more realistic that more than half of the material will remain <u>at the explosion site</u>.

This might create:

- High Dose Rates at the scene (> 1 R/hr)
- Highly contaminated "blast" victims
- An inhalation concern for responders

Note: These issues can be safely managed and should not result in delayed medical care of the victims

Even with Protective Clothing, RADIATION Can Still be a Hazard

- Hazardous radiation can occur from
 - High Levels of Contamination (ground shine)
 - A poorly distributed source (hot spots)
 - Intact sources (or pre-distribution)
- NCRP-138 "Management of Terrorist Events Involving Radioactive Material" recommends first responder "turn back" radiation levels of:
 - 10 R/hour, or
 - 10 rem total dose

(Note: responders can safely work at these levels if their exposure is monitored and work activities planned)

DO NOT delay treatment of Medical Emergencies For Radiological Concerns

- Stabilize and remove medical emergencies from the scene
- Decontaminate patients only if stable

"Gross Decon"

(removal of outer clothing) removes most of the contamination

Patients can also be wrapped in blanket to prevent spread of contamination

Response to a Radiological Incident ~ Contamination ~

- Evacuate and "gross decon" victims (removal of outer clothing is an effective gross decontamination method)
- Monitor and isolate contaminated area
- Avoid breathing in radioactive material
 - Shelter in place (close windows, turn off heating and A/C)
 - Evacuate, when safe to do so
 - Wear respiratory protection
- Radioactive material will not be uniformly distributed. Radiation "Hot Spots" near the source of the event will be a hazard.

Additional Steps to Mitigate High Contamination Hazards in the Immediate Area of a Release

- Approach and establish hotlines upwind
- Reduce Resuspension
 [Resuspension is the process of ground and plant contamination becoming airborne through the action of wind and/or activity]
 - Avoid activities that stir up dirt (driving, sweeping, etc..)
 - Apply "Fixative" (firefighting foam or even just misting water upwind of the site)

Response to a Radiological Incident ~ Radiation ~

- Time: Limit the time spent in an area of high radiation
- Distance: Exposure decreases dramatically as you increase your distance from the source.

Shielding: Radiation is blocked by mass.
 When practical, operate behind objects

Conclusion: First Responder Considerations

- Acute health effects from radiation dose are unlikely without prolonged, high-concentration exposure.
- Contamination readily detectable at long distances.
- Medical emergencies take precedence over radiological monitoring.
- Wear respiratory protection, isolate area.
- Use decontamination techniques (removing outer clothing most effective)
- Call for assistance

References

Transportation Emergency Preparedness Program (TEPP)

http://www.em.doe.gov/otem/program.html

Predictive Modeling Provided By

HotSpot Health Physics Code v2.0, Steve Homann LLNL National Release Advisory Center, LLNL (http://narac.llnl.gov/)

Gioania References Provided By

- IAEA-TECDOC-1009, "Dosimetric and medical aspects of the radiological accident in Goiania in 1987," June 1998, International Atomic Energy Agency.
- Radiation Emergency Assistance Services (SAER) from the Institute for Radiation Protection & Dosimetry (IRD), BRAZIL, Raul dos Santos.
- Dr. Henry B. Spitz, Professor of Nuclear and Radiological Engineering, Department of Mechanical, Industrial & Nuclear Engineering, University of Cincinnati
- Dr. Jose Julio Rozental Bernardo Dantas, Instituto de Radioprotecao Dosimetria, Brasil